DataFrame
Bases: _DataFrameCoreMixin, _DataFrameIOMixin, _DataFrameUtilsMixin, _DataFrameGetStringMixin, DataFrame
flowchart TD
metaframe.src.dataframe.DataFrame[DataFrame]
metaframe.src.dataframe.core._DataFrameCoreMixin[_DataFrameCoreMixin]
metaframe.src.dataframe.io._DataFrameIOMixin[_DataFrameIOMixin]
metaframe.src.dataframe.utils._DataFrameUtilsMixin[_DataFrameUtilsMixin]
metaframe.src.dataframe.getstring._DataFrameGetStringMixin[_DataFrameGetStringMixin]
metaframe.src.dataframe.core._DataFrameCoreMixin --> metaframe.src.dataframe.DataFrame
metaframe.src.dataframe.io._DataFrameIOMixin --> metaframe.src.dataframe.DataFrame
metaframe.src.dataframe.utils._DataFrameUtilsMixin --> metaframe.src.dataframe.DataFrame
metaframe.src.dataframe.getstring._DataFrameGetStringMixin --> metaframe.src.dataframe.DataFrame
click metaframe.src.dataframe.DataFrame href "" "metaframe.src.dataframe.DataFrame"
click metaframe.src.dataframe.core._DataFrameCoreMixin href "" "metaframe.src.dataframe.core._DataFrameCoreMixin"
click metaframe.src.dataframe.io._DataFrameIOMixin href "" "metaframe.src.dataframe.io._DataFrameIOMixin"
click metaframe.src.dataframe.utils._DataFrameUtilsMixin href "" "metaframe.src.dataframe.utils._DataFrameUtilsMixin"
click metaframe.src.dataframe.getstring._DataFrameGetStringMixin href "" "metaframe.src.dataframe.getstring._DataFrameGetStringMixin"
Metadata-aware pandas DataFrame.
DataFrame is a subclass of pandas.DataFrame that adds
first-class support for metadata, semantic indexing, and structured
table representations.
It behaves like a standard pandas DataFrame while providing additional
abstractions for working with metadata-rich datasets. All pandas operations
remain available and return metaframe.DataFrame objects whenever possible.
The core idea of DataFrame is that structure is data:
rows and columns are treated as semantic entities that can carry
metadata (MetaData DataFrame -> MetaFrame) and be selected using
expressive, readable selectors.
Key features include:
- MetaFrame-backed index/column management (
mfr/mfc) - MetaFrame-aware indexers (
q,gs,mfloc,mfiloc) - Safe manipulation of index and columns without breaking structure
- Structured file import/export
- Compatibility with all standard pandas APIs
Properties
_constructor:
Pandas _constructor overridden to return metaframe.DataFrame.
_constructor_sliced:
Pandas _constructor_sliced overridden to return metaframe.Series.
mfr:
MetaFrameRow view of DataFrame index as _MetaFrame. Settable with MetaFrame or
compatible DataFrame.
mfc:
MetaFrameCol view of DataFrame columns as _MetaFrame. Settable with MetaFrame or
compatible DataFrame.
q:
Query indexer (obj.gs[row/col] or obj.gs[row, col]). Returns _GetStringIndexer
with __getitem__/__setitem__ support. Tries rows first, then columns for
non-table DataFrame, columns only for table DataFrame.
gs:
Get-string indexer (obj.gs[row/col] or obj.gs[row, col]). Returns _GetStringIndexer
with __getitem__/__setitem__ support. Tries rows first, then columns for
non-table DataFrame, columns only for table DataFrame.
mfloc:
MetaFrame .loc indexer (obj.mfloc[mfr_key/mfc_key]). Returns _MfIndexer
mirroring mfr.loc/mfc.loc with DataFrame row/col selection. Supports __setitem__.
mfiloc:
MetaFrame .iloc indexer (obj.mfiloc[mfr_pos/mfc_pos]). Returns _MfIndexer
mirroring mfr.iloc/mfc.iloc with DataFrame row/col selection. Supports __setitem__.
is_table:
bool indicating table format (simple index/columns, no MultiIndex).
is_metaframe:
bool indicating MetaFrame format (table + numeric index).
Notes
The class behaves like a normal pandas DataFrame.
You can always access the underlying pandas behavior, and you can freely mix pandas and MetaFrame operations within the same workflow.
Source code in metaframe/src/dataframe/base.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | |
gs
property
General semantic selector for rows and columns.
gs provides expressive, MetaFrame-aware selection using
semantic labels, operations or regular expressions.
The selector attempts row selection first, then column selection, unless the DataFrame is in table format, in which case column selection is preferred.
Returns:
| Type | Description |
|---|---|
_GetStringIndexer
|
An indexer supporting |
Notes
Read-only property.
gs is designed for readability and intent, not positional access.
It complements rather than replaces loc/iloc.
For more informations on the Get-Strings format and usage, see the 'Get-Strings' wiki page!
Examples:
Getter
>>> from metaframe.testing import dataframe, metaframe_row
>>> metaframe_row
floats bool group
0 1.1 False 0
1 2.2 False 0
2 3.3 True 2
3 4.4 True 1
>>> metaframe_row.gs["floats:(>3 or =1.1) and group:!2"]
floats bool group
0 1.1 False 0
3 4.4 True 1
>>> dataframe
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
>>> dataframe.gs["bool:'.*se$'", "group:0,2"]
strings g
group 0
floats bool group
1.1 False 0 A
2.2 False 0 B
Setter
>>> metaframe_row.gs["floats:(>3 or =1.1) and group:!2"] = [0.0, True, -1]
>>> metaframe_row
floats bool group
0 0.0 True -1
1 2.2 False 0
2 3.3 True 2
3 0.0 True -1
>>> dataframe.gs["bool:'.*se$'", "group:0,2"] = 'E'
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 E 2
2.2 False 0 2 E None
3.3 True 2 3 C B
4.4 True 1 4 D None
q
property
General query selector for rows and columns.
q provides expressive, MetaFrame-aware selection using
pandas query strings.
The selector attempts row selection first, then column selection, unless the DataFrame is in table format, in which case column selection is preferred.
Returns:
| Type | Description |
|---|---|
_GetStringIndexer
|
An indexer supporting |
Notes
Read-only property.
q is designed for readability and intent, not positional access.
It complements rather than replaces loc/iloc.
For more informations on the query format, see the pandas.DataFrame.query
documentation!
mfr
property
writable
DataFrame view of the DataFrame index (MetaFrameRow).
mfr exposes the DataFrame rows as a structured MetaFrame,
allowing metadata-aware inspection, selection, and modification
of the index.
Returns:
| Type | Description |
|---|---|
_MetaFrame
|
|
Examples:
>>> from metaframe.testing import dataframe
>>> dataframe
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
>>> dataframe.mfr
floats bool group
0 1.1 False 0
1 2.2 False 0
2 3.3 True 2
3 4.4 True 1
The extra space between the columns names and the matrix is
expected, as _MetaFrame objects have a specific index name
identifier.
mfc
property
writable
DataFrame view of the DataFrame columns (MetaFrameCol).
mfc exposes the DataFrame columns as a structured MetaFrame,
allowing metadata-aware inspection, selection, and modification
of the columns.
Returns:
| Type | Description |
|---|---|
_MetaFrame
|
|
Examples:
>>> from metaframe.testing import dataframe
>>> dataframe
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
>>> dataframe.mfc
strings group
0 f 1
1 g 0
2 h 1
The extra space between the columns names and the matrix is
expected, as _MetaFrame objects have a specific index name
identifier.
is_table
property
Indicate whether the DataFrame is in table format.
A table-format DataFrame has a simple (non-MultiIndex) index and columns, and is typically suitable for export or display.
Returns:
| Type | Description |
|---|---|
bool
|
True if the DataFrame is in table format. |
Notes
Read-only property.
Examples:
>>> from metaframe import dataframe, metaframe_col
>>> metaframe_col
strings group
0 f 1
1 g 0
2 h 1
>>> metaframe_col.is_table
True
>>> metaframe_col.set_index('strings').is_table
True
>>> dataframe
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
>>> dataframe.is_table
False
is_metaframe
property
Indicate whether the DataFrame conforms to MetaFrame format.
A MetaFrame-format DataFrame is a table-format DataFrame with a numeric index suitable for representing structured metadata.
Returns:
| Type | Description |
|---|---|
bool
|
True if the DataFrame conforms to MetaFrame format. |
Notes
Read-only property.
Examples:
>>> from metaframe import dataframe, metaframe_col
>>> metaframe_col
strings group
0 f 1
1 g 0
2 h 1
>>> metaframe_col.is_metaframe
True
>>> metaframe_col.set_index('strings').is_metaframe
False
>>> dataframe
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
>>> dataframe.is_metaframe
False
mfloc
property
MetaFrame-aware label-based indexer.
Indexes MetaFrameRow/MetaFrameCol via .loc semantics (obj.mfloc[mfr_key/mfc_key]
and obj.mfloc[mfr_key, mfc_key]).
mfloc mirrors pandas .loc semantics while operating on
MetaFrame row and column representations. It allows selection
using MetaFrame-compatible keys rather than raw labels.
Returns:
| Type | Description |
|---|---|
_MfIndexer
|
A MetaFrame-aware label-based indexer. |
Notes
Read-only property.
Examples:
Getter
>>> from metaframe import dataframe
>>> dataframe
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
Non-tuple values are applied on MetaFrames columns
>>> dataframe.mfloc['floats']
strings f g h
group 1 0 1
floats
1.1 1 A 2
2.2 2 B None
3.3 3 C B
4.4 4 D None
>>> dataframe.mfloc[:, 'strings']
strings f g h
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
>>> dataframe.mfloc['floats', 'strings']
strings f g h
floats
1.1 1 A 2
2.2 2 B None
3.3 3 C B
4.4 4 D None
Multiple selection, with list or slices, is also possible
>>> dataframe.mfloc[['floats', 'group']]
strings f g h
group 1 0 1
floats group
1.1 0 1 A 2
2.2 0 2 B None
3.3 2 3 C B
4.4 1 4 D None
>>> dataframe.mfloc[slice('floats', 'group')]
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
Tuples enable rows selection:
>>> dataframe.mfloc[(0, ['floats', 'group']), ([1, 2], 'strings')]
strings g h
floats group
1.1 0 A 2
':' can not be used within tuple! Use '' or 'slice(None)' instead:
>>> dataframe.mfloc[(0,), (slice(None), 'strings')]
strings f g h
floats bool group
1.1 False 0 1 A 2
Setter
The mfloc property also support setting, in the similar fahion
to pandas DataFrame loc (support new columns creation).
The setting will only affect the corrsponding MetaFrames matrices,
never the DataFrame matrix!
>>> from metaframe import dataframe
>>> dataframe
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
>>> dataframe.mfloc['group'] = 5
>>> dataframe
strings f g h
group 1 0 1
floats bool group
1.1 False 5 1 A 2
2.2 False 5 2 B None
3.3 True 5 3 C B
4.4 True 5 4 D None
>>> dataframe.mfloc[:, 'strings'] = ['i', 'j', 'k']
>>> dataframe
strings i j k
group 1 0 1
floats bool group
1.1 False 5 1 A 2
2.2 False 5 2 B None
3.3 True 5 3 C B
4.4 True 5 4 D None
>>> dataframe.mfloc[(0, 'New'),] = 'foo'
>>> dataframe
strings i j k
group 1 0 1
floats bool group New
1.1 False 5 foo 1 A 2
2.2 False 5 nan 2 B None
3.3 True 5 nan 3 C B
4.4 True 5 nan 4 D None
mfiloc
property
MetaFrame-aware positional indexer.
Indexes MetaFrameRow/MetaFrameCol via .iloc semantics (obj.mfiloc[mfr_pos/mfc_pos]
and obj.mfiloc[mfr_pos, mfc_pos]).
mfiloc mirrors pandas .iloc semantics while preserving
MetaFrame structure and metadata during positional selection.
Returns:
| Type | Description |
|---|---|
_MfIndexer
|
A MetaFrame-aware positional indexer. |
Notes
Read-only property.
Examples:
Getter
>>> from metaframe import dataframe
>>> dataframe
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
Non-tuple values are applied on MetaFrames columns
>>> dataframe.mfiloc[0]
strings f g h
group 1 0 1
floats
1.1 1 A 2
2.2 2 B None
3.3 3 C B
4.4 4 D None
>>> dataframe.mfiloc[:, 0]
strings f g h
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
>>> dataframe.mfiloc[0, 0]
strings f g h
floats
1.1 1 A 2
2.2 2 B None
3.3 3 C B
4.4 4 D None
Multiple selection, with list or slices, is also possible
>>> dataframe.mfiloc[[0, 2]]
strings f g h
group 1 0 1
floats group
1.1 0 1 A 2
2.2 0 2 B None
3.3 2 3 C B
4.4 1 4 D None
>>> dataframe.mfiloc[slice(0, 3)]
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
Tuples enable rows selection:
>>> dataframe.mfiloc[(0, [0, 2]), ([1, 2], 0)]
strings g h
floats group
1.1 0 A 2
':' can not be used within tuple! Use '' or 'slice(None)' instead:
>>> dataframe.mfiloc[(0,), (slice(None), 0)]
strings f g h
floats bool group
1.1 False 0 1 A 2
Setter
The mfiloc property also support setting, in the similar fahion
to pandas DataFrame iloc (does NOT support new columns creation).
The setting will only affect the corrsponding MetaFrames matrices,
never the DataFrame matrix!
>>> from metaframe import dataframe
>>> dataframe
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
>>> dataframe.mfiloc[2] = 5
>>> dataframe
strings f g h
group 1 0 1
floats bool group
1.1 False 5 1 A 2
2.2 False 5 2 B None
3.3 True 5 3 C B
4.4 True 5 4 D None
>>> dataframe.mfiloc[:, 0] = ['i', 'j', 'k']
>>> dataframe
strings i j k
group 1 0 1
floats bool group
1.1 False 5 1 A 2
2.2 False 5 2 B None
3.3 True 5 3 C B
4.4 True 5 4 D None
_constructor
property
Return the MetaFrame DataFrame constructor.
This ensures that pandas operations returning a DataFrame
(such as slicing, arithmetic operations, or transformations)
preserve the metaframe.DataFrame type.
Returns:
| Type | Description |
|---|---|
Type
|
The |
_constructor_sliced
property
Return the MetaFrame Series constructor.
This ensures that pandas operations returning a Series
(such as column access or row selection) return a
metaframe.Series when possible.
Returns:
| Type | Description |
|---|---|
Type
|
The |
fullmatch(pattern, names=None, clean=True, **kwargs)
Filter rows whose values fully match a regex pattern.
Applies re.fullmatch to selected columns and keeps rows where
at least one column matches.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
pattern
|
str
|
Regular expression. |
required |
names
|
str or list of str
|
Columns to evaluate. Defaults to all. |
None
|
clean
|
bool
|
Drop rows that become entirely NaN. |
True
|
**kwargs
|
Passed to the matching helper. |
{}
|
Returns:
| Type | Description |
|---|---|
Self
|
Filtered DataFrame. |
Examples:
>>> from metaframe.testing import metaframe_row
>>> metaframe_row
floats bool group
0 1.1 False 0
1 2.2 False 0
2 3.3 True 2
3 4.4 True 1
>>> metaframe_row.fullmatch(".*1$")
floats bool group
0 1.1 NaN NaN
3 NaN NaN 1.0
>>> metaframe_row.fullmatch(".*1$", clean=False)
floats bool group
0 1.1 NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN 1.0
Source code in metaframe/src/dataframe/getstring.py
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | |
_eval_get_string(get_str, obj_name, axis=1)
Evaluates parsed get-string expression for selection.
Executes safely-eval'd get_str on appropriate DataFrame (self for simple Index,
mf(axis) for MultiIndex). Returns selected rows/columns based on result index.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
get_str
|
str
|
Parsed get-string from |
required |
obj_name
|
str
|
Variable name used in get-string expression. |
required |
axis
|
(Literal[0, 1], optional)
|
0=rows (MetaFrameRow), 1=columns (MetaFrameCol). |
1
|
Returns:
| Type | Description |
|---|---|
Self
|
DataFrame with selected rows (axis=0/1 simple) or columns (axis=1 MultiIndex). |
Raises:
| Type | Description |
|---|---|
ValueError
|
Get-strings invalid on simple row indexes. |
Source code in metaframe/src/dataframe/getstring.py
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | |
natsort_values(*args, key=None, **kwargs)
Sort using natural (human) ordering.
Wraps sort_values with a numeric-aware key based on the
natsort library. If this first natsort fails (ie, float+dates
comparison), the series will be converted to strings prior to
natsorting.
Disallows passing a custom key to avoid conflicts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*args
|
Forwarded to |
()
|
|
**kwargs
|
Forwarded to |
()
|
|
key
|
None
|
Must not be provided. |
None
|
Returns:
| Type | Description |
|---|---|
Self
|
Naturally sorted DataFrame. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If a custom |
Examples:
>>> from metaframe.testing import mfr
>>> mfr
strings integers floats bool ... bool_with_missing dates_with_missing mixed_numeric mixed_types
0 a 1 1.1 False ... False 2024-02-01 1 1
1 b 2 2.2 False ... NaN NaN 2.2 a
2 c 3 3.3 True ... NaN 2024-02-03 3 3.14
3 d 4 4.4 True ... True NaN 4.4 NaN
4 e 5 5.5 False ... NaN 2024-02-05 NaN 2024-03-01
[5 rows x 14 columns]
>>> mfr.natsort_values('mixed_types')
strings integers floats bool ... bool_with_missing dates_with_missing mixed_numeric mixed_types
3 d 4 4.4 True ... True NaN 4.4 NaN
0 a 1 1.1 False ... False 2024-02-01 1 1
2 c 3 3.3 True ... NaN 2024-02-03 3 3.14
4 e 5 5.5 False ... NaN 2024-02-05 NaN 2024-03-01
1 b 2 2.2 False ... NaN NaN 2.2 a
[5 rows x 14 columns]
Source code in metaframe/src/dataframe/utils.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | |
order_values(sorter=None, by=None, *args, axis=0, **kwargs)
Sort using explicit categorical order instead of lexicographic order.
Supports explicit order lists per column (dict), multi-column lists, or appearance-order.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
sorter
|
list, list[list], dict, or None
|
Ordering definition.
* None: appearance order
* list: single column
* list[list]: multi-column
* dict: {column: order}, with order being one of the above, and
ignore |
None
|
by
|
str or list of str
|
Columns to sort by. If None, use all columns. Ignored if sorted is set to a dictionary. |
None
|
axis
|
(0, 1)
|
Axis to sort. |
0
|
*args
|
Passed to |
()
|
|
**kwargs
|
Passed to |
()
|
Raises:
| Type | Description |
|---|---|
ValueError
|
if sorter is neither None, a string or a list of strings. |
Returns:
| Type | Description |
|---|---|
Self
|
Sorted DataFrame. |
Examples:
>>> from metaframe.testing import mfr
>>> mfr[['bool', 'group']]
bool group
0 False 0
1 False 0
2 True 2
3 True 1
4 False 2
>>> mfr[['bool', 'group']].order_values({'group': [2, 1, 0], 'bool': None})
bool group
4 False 2
2 True 2
3 True 1
0 False 0
1 False 0
Source code in metaframe/src/dataframe/utils.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | |
auto_sort(*args, axis=None, **kwargs)
Automatically sort rows and/or columns.
Behavior depends on structure: * Table: columns sorted by increasing uniqueness, then rows naturally sorted * Non-Table: recursively sorts MetaFrames and reindexes accordingly
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
axis
|
(0, 1)
|
Specific axis to sort. |
0
|
*args
|
Passed to |
()
|
|
**kwargs
|
Passed to |
()
|
Returns:
| Type | Description |
|---|---|
Self
|
Sorted DataFrame. |
Examples:
>>> from metaframe.testing import df
>>> print(df)
##############
# DataFrame #
##############
strings f g h
id 1 2 3
none_values NaN NaN NaN
strings integers floats
a 1 1.1 0.944497 0.464098 0.192795
b 2 2.2 0.620084 0.684224 0.103438
c 3 3.3 0.281979 0.753425 0.792706
(First 3 DataFrame and MetaFrames rows & columns showed)
################
# MetaFrameRow #
################
strings integers floats bool ... bool_with_missing dates_with_missing mixed_numeric mixed_types
0 a 1 1.1 False ... False 2024-02-01 1 1
1 b 2 2.2 False ... NaN NaN 2.2 a
2 c 3 3.3 True ... NaN 2024-02-03 3 3.14
3 d 4 4.4 True ... True NaN 4.4 NaN
4 e 5 5.5 False ... NaN 2024-02-05 NaN 2024-03-01
[5 rows x 14 columns]
################
# MetaFrameCol #
################
strings id none_values group
0 f 1 NaN 1
1 g 2 NaN 0
2 h 3 NaN 1
3 i 4 NaN 3
[Row levels]: strings, integers, floats, bool, dates, none_values, group, strings_with_missing, ints_with_missing, floats_with_missing, bool_with_missing, dates_with_missing, mixed_numeric, mixed_types
[Col levels]: strings, id, none_values, group
DF : [5 rows x 4 columns]
MFR: [5 rows x 14 columns]
MFC: [4 rows x 4 columns]
Is Table: False
Is MetaFrame: False
>>> print(df.auto_sort())
##############
# DataFrame #
##############
none_values NaN
group 0 1
id 2 1 3
none_values bool group
NaN False 0 0.684224 0.620084 0.103438
0 0.464098 0.944497 0.192795
2 0.573377 0.595951 0.704949
(First 3 DataFrame and MetaFrames rows & columns showed)
################
# MetaFrameRow #
################
none_values bool group bool_with_missing ... integers floats mixed_numeric mixed_types
0 NaN False 0 NaN ... 2 2.2 2.2 a
1 NaN False 0 False ... 1 1.1 1 1
2 NaN False 2 NaN ... 5 5.5 NaN 2024-03-01
3 NaN True 1 True ... 4 4.4 4.4 NaN
4 NaN True 2 NaN ... 3 3.3 3 3.14
[5 rows x 14 columns]
################
# MetaFrameCol #
################
none_values group id strings
0 NaN 0 2 g
1 NaN 1 1 f
2 NaN 1 3 h
3 NaN 3 4 i
[Row levels]: none_values, bool, group, bool_with_missing, dates_with_missing, floats_with_missing, ints_with_missing, strings_with_missing, dates, strings, integers, floats, mixed_numeric, mixed_types
[Col levels]: none_values, group, id, strings
DF : [5 rows x 4 columns]
MFR: [5 rows x 14 columns]
MFC: [4 rows x 4 columns]
Is Table: False
Is MetaFrame: False
Source code in metaframe/src/dataframe/utils.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 | |
from_input(input=None, **kwargs)
classmethod
Create a DataFrame from any DataFrame-convertible input.
The input is first converted to a pandas DataFrame using
input_to_df and then wrapped in this subclass.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
input
|
Any
|
File path, URL, pandas DataFrame, or other convertible object. |
None
|
**kwargs
|
Passed to |
{}
|
Returns:
| Type | Description |
|---|---|
Self
|
New DataFrame instance. |
Source code in metaframe/src/dataframe/io.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | |
from_table(df, mf_names=None, mf_iloc=None, mf_from_to=None, name=None, axis=0, header=0, **kwargs)
classmethod
Create a MultiIndex DataFrame from a table-format DataFrame.
Selected columns are promoted to a MultiIndex on rows or columns.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
Any
|
Table-format DataFrame (simple index/columns). |
required |
mf_names
|
str or list of str
|
Column names to elevate. |
None
|
mf_iloc
|
int or list of int
|
Column positions to elevate. |
None
|
mf_from_to
|
str or list of str
|
Column range to elevate. |
None
|
name
|
str
|
Name of the resulting MultiIndex. |
None
|
axis
|
(0, 1)
|
0: rows, 1: columns. |
0
|
header
|
int
|
Header row for input parsing. |
0
|
**kwargs
|
Passed to |
{}
|
Returns:
| Type | Description |
|---|---|
Self
|
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If input is not table format or no columns are specified. |
Examples:
>>> import metaframe as mf
>>> from metaframe.testing import metaframe_row
>>> metaframe_row
floats bool group
0 1.1 False 0
1 2.2 False 0
2 3.3 True 2
3 4.4 True 1
>>> df = mf.DataFrame.from_table(metaframe_row, mf_names='group')
>>> df
floats bool
group
0 1.1 False
0 2.2 False
2 3.3 True
1 4.4 True
>>> df.index
MultiIndex([(0,),
(0,),
(2,),
(1,)],
names=['group'])
Source code in metaframe/src/dataframe/io.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | |
from_elements(mtx, mfr=None, mfc=None, header=0, **kwargs)
classmethod
Assemble a DataFrame from a matrix data and optional MetaFrames.
Combines matrix data with MetaFrameRow (index) and MetaFrameCol (columns) DataFrames. Can ignore row/col names on matrix input. Validates MetaFrame compatibility.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
mtx
|
Any
|
Matrix-like data. |
required |
mfr
|
DataFrame
|
Row MetaFrame. |
None
|
mfc
|
DataFrame
|
Column MetaFrame. |
None
|
header
|
int
|
|
0
|
**kwargs
|
Passed to |
{}
|
Returns:
| Type | Description |
|---|---|
Self
|
|
Examples:
>>> import metaframe as mf
>>> from metaframe.testing import metaframe_row, metaframe_col, mtx
>>> mtx = mf.DataFrame.from_dict({0: {0: 'A', 1: 'B', 2: 'C', 3: 'D'}, 1: {0: 'E', 1: 'F', 2: 'G', 3: 'H'}, 2: {0: 'I', 1: 'J', 2: 'K', 3: 'L'}})
>>> mtx
0 1 2
0 A E I
1 B F J
2 C G K
3 D H L
>>> metaframe_row
floats bool group
0 1.1 False 0
1 2.2 False 0
2 3.3 True 2
3 4.4 True 1
>>> metaframe_col
strings group
0 f 1
1 g 0
2 h 1
>>> mf.DataFrame.from_elements(mtx, metaframe_row, metaframe_col)
strings f g h
group 1 0 1
floats bool group
1.1 False 0 A E I
2.2 False 0 B F J
3.3 True 2 C G K
4.4 True 1 D H L
Source code in metaframe/src/dataframe/io.py
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | |
to_index()
Convert this DataFrame to a pandas Index or MultiIndex.
Returns:
| Type | Description |
|---|---|
Index or MultiIndex
|
|
Examples:
>>> from metaframe.testing import dataframe, metaframe_row
>>> metaframe_row.to_index()
MultiIndex([(1.1, False, 0),
(2.2, False, 0),
(3.3, True, 2),
(4.4, True, 1)],
names=['floats', 'bool', 'group'])
Source code in metaframe/src/dataframe/io.py
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | |
to_table(idx=None, col=None, reset_idx_name=False, reset_col_name=True)
Converts MultiIndex DataFrame to table format (simple index/columns).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
idx
|
str
|
Row level to extract. |
None
|
col
|
str
|
Column level to extract. |
None
|
reset_idx_name
|
bool
|
|
False
|
reset_col_name
|
bool
|
|
True
|
Returns:
| Type | Description |
|---|---|
Self
|
|
Examples:
>>> from metaframe.testing import dataframe
>>> dataframe
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
>>> dataframe.to_table()
0 1 2
0 1 A 2
1 2 B None
2 3 C B
3 4 D None
>>> dataframe.to_table('floats', 'strings')
f g h
floats
1.1 1 A 2
2.2 2 B None
3.3 3 C B
4.4 4 D None
>>> dataframe.to_table('floats', 'strings', reset_idx_name = True)
f g h
1.1 1 A 2
2.2 2 B None
3.3 3 C B
4.4 4 D None
Source code in metaframe/src/dataframe/io.py
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | |
to_metaframe(*args, names=None, **kwargs)
Converts DataFrame to MetaFrame format (table + numeric range index).
For tables, uses reset_index().
For non-table structures, applies melt() then reset_index().
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*args
|
Positional arguments passed to |
()
|
|
names
|
str
|
Names for reset index levels. Passed to |
None
|
**kwargs
|
Keyword arguments passed to |
{}
|
Returns:
| Type | Description |
|---|---|
Self
|
|
Examples:
>>> from metaframe.testing import dataframe
>>> dataframe
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
>>> dataframe.to_metaframe(names=['floats', 'bool', 'group_row'])
floats bool group_row strings group value
0 1.1 False 0 f 1 1
1 2.2 False 0 f 1 2
2 3.3 True 2 f 1 3
3 4.4 True 1 f 1 4
4 1.1 False 0 g 0 A
5 2.2 False 0 g 0 B
6 3.3 True 2 g 0 C
7 4.4 True 1 g 0 D
8 1.1 False 0 h 1 2
9 2.2 False 0 h 1 None
10 3.3 True 2 h 1 B
11 4.4 True 1 h 1 None
Source code in metaframe/src/dataframe/io.py
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 | |
to_dtale(idx=None, col=None, **kwargs)
Launches interactive D-Tale viewer for this DataFrame (must be table format).
Converts to table format first using to_table(), then calls dtale.show().
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
idx
|
str
|
MetaFrameRow level for table index. Defaults to None. |
None
|
col
|
str, optional)
|
MetaFrameCol level for table columns. Defaults to None. |
None
|
**kwargs
|
Arguments passed to |
{}
|
Returns:
| Type | Description |
|---|---|
dtale.views.DtaleData: D-Tale instance with interactive DataFrame viewer.
|
|
Source code in metaframe/src/dataframe/io.py
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 | |
to_numeric(invalid=None, errors='coerce')
Converts all DataFrame values to numeric types with custom NA handling.
Applies pd.to_numeric across columns, then replaces new NaNs with invalid
value while preserving original NaN positions with DEFAULT_NA.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
invalid
|
scalar
|
Replacement for coerced values. |
None
|
errors
|
('raise', coerce, ignore)
|
|
'raise'
|
Returns:
| Type | Description |
|---|---|
Self
|
|
Examples:
>>> from metaframe.testing import dataframe
>>> dataframe
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
>>> dataframe.to_numeric(invalid='X')
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 X 2.0
2.2 False 0 2 X NaN
3.3 True 2 3 X X
4.4 True 1 4 X NaN
Source code in metaframe/src/dataframe/io.py
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 | |
to_int(start_at=0, axis=0, whole=False)
Converts DataFrame values to consecutive integers, deduplicating within scope.
Maps unique values to sequential integers starting at start_at. Use whole=True
for global deduplication across entire DataFrame, or axis for per-column/row.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
start_at
|
int
|
|
0
|
axis
|
(0, 1)
|
|
0
|
whole
|
bool
|
Apply mapping globally instead of per-axis. |
False
|
Returns:
| Type | Description |
|---|---|
Self
|
|
Examples:
>>> from metaframe.testing import metaframe_row
>>> metaframe_row
floats bool group
0 1.1 False 0
1 2.2 False 0
2 3.3 True 2
3 4.4 True 1
>>> metaframe_row.to_int()
floats bool group
0 0 0 0
1 1 0 0
2 2 1 1
3 3 1 2
>>> metaframe_row.to_int(axis=1)
floats bool group
0 0 1 1
1 0 1 1
2 0 1 2
3 0 1 1
>>> metaframe_row.to_int(whole=True)
floats bool group
0 1 0 0
1 2 0 0
2 3 4 5
3 6 4 1
Source code in metaframe/src/dataframe/io.py
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 | |
to_file(output, **kwargs)
Writes DataFrame to file, with MetaFrame-aware handling.
Automatically detects file format (.csv, .tsv, .xlsx) and converts
between table and MetaFrame representations. Excel extensive mode
enables lossless round-tripping with dedicated MetaFrame sheets.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
output
|
str or ExcelWriter
|
Destination file or writer. |
required |
**kwargs
|
Passed to format-specific writers. |
{}
|
Raises:
| Type | Description |
|---|---|
ValueError
|
For invalid formats or incompatible shapes. |
NotImplementedError
|
For unsupported extensions. |
Notes
For more informations on the parameters, see 'Excel Output' wiki page!
Examples:
>>> from metaframe.testing import dataframe
>>> dataframe.to_file('path/to/excel.file.xlsx')
Source code in metaframe/src/dataframe/io.py
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 | |
to_file_excel(*args, **kwargs)
Explicit Excel file export.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
args
|
ExcelExporter parameters. |
()
|
|
kwargs
|
ExcelExporter parameters. |
()
|
Notes
See to_file method and Excel export wiki page for more informations!
Source code in metaframe/src/dataframe/io.py
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 | |
to_file_csv(*args, **kwargs)
Explicit CSV file export.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
args
|
TxtExporter parameters. |
()
|
|
kwargs
|
TxtExporter parameters. |
()
|
Notes
See to_file method and Txt export wiki page for more informations!
Source code in metaframe/src/dataframe/io.py
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 | |
to_file_tsv(*args, **kwargs)
Explicit TSV file export.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
args
|
TxtExporter parameters. |
()
|
|
kwargs
|
TxtExporter parameters. |
()
|
Notes
See to_file method and Txt export wiki page for more informations!
Source code in metaframe/src/dataframe/io.py
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 | |
to_summary(**kwargs)
Make a Summary representation of self.
Multiple summary types can be launched from a Summary:
.row(...)
.col(...)
.whole(...)
.basic(...)
For more informations on the Summary parameters, see the Summary
wiki page!
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
kwargs
|
DataFrameSummaryOpts keyword arguments. |
{}
|
Returns:
| Type | Description |
|---|---|
Summary
|
a Summary representation of self |
Examples:
>>> from metaframe import dataframe
>>> dataframe_summary = dataframe.to_summary()
>>> # dataframe_summary.row()
>>> # dataframe_summary.col()
>>> # dataframe_summary.whole()
>>> # dataframe_summary.basic()
Source code in metaframe/src/dataframe/io.py
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 | |
to_frame()
Return a plain pandas DataFrame copy.
Returns:
| Type | Description |
|---|---|
DataFrame
|
|
Examples:
>>> from metaframe.testing import dataframe
>>> type(dataframe)
<class 'metaframe.src.dataframe.base.DataFrame'>
>>> type(dataframe.to_frame())
<class 'pandas.DataFrame'>
Source code in metaframe/src/dataframe/core.py
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 | |
mf(axis)
Returns DataFrame view of index (axis=0) or columns (axis=1).
Converts the index (rows) or columns into a table-format DataFrame using
from_index.
The return object is a DataFrame, not a _MetaFrame!
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
axis
|
(0, 1)
|
Axis to view. * 0: rows (index) * 1: columns |
0
|
Returns:
| Type | Description |
|---|---|
Self
|
DataFrame representation of the selected axis. |
Examples:
>>> from metaframe.testing import dataframe
>>> dataframe
strings f g h
group 1 0 1
floats bool group
1.1 False 0 1 A 2
2.2 False 0 2 B None
3.3 True 2 3 C B
4.4 True 1 4 D None
>>> dataframe.mf(axis=0)
floats bool group
0 1.1 False 0
1 2.2 False 0
2 3.3 True 2
3 4.4 True 1
>>> type(dataframe.mf(axis=0))
<class 'metaframe.src.dataframe.base.DataFrame'>
>>> dataframe.mf(axis=1)
strings group
0 f 1
1 g 0
2 h 1
>>> type(dataframe.mf(axis=1))
<class 'metaframe.src.dataframe.base.DataFrame'>
Source code in metaframe/src/dataframe/core.py
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 | |
merge(*args, indicator=False, only=False, conserve_index=False, **kwargs)
Add new parameters too pandas' merge method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
only
|
bool
|
whether to select only lines with indicator ending with '_only' Depreciated since the introduction of 'left_anti' and 'right_anti' 'how' parameters. |
False
|
conserve_index
|
bool
|
whether to conserve the index of left in the result |
False
|
args
|
pandas' merge parameters |
()
|
|
indicator
|
pandas' merge parameters |
()
|
|
kwargs
|
pandas' merge parameters |
()
|
Returns:
| Type | Description |
|---|---|
Self
|
|
Examples:
>>> from metaframe.testing import metaframe_row, metaframe_col
The left DataFrame index can be lost with native pandas merge:
>>> metaframe_col.merge(metaframe_row[['floats', 'group']], how='outer')
strings group floats
0 g 0 1.1
1 g 0 2.2
2 f 1 4.4
3 h 1 4.4
4 NaN 2 3.3
Use conserve_index=True to preserve the left index in the result:
>>> metaframe_col.merge(metaframe_row[['floats', 'group']], how='outer', conserve_index=True)
strings group floats
1.0 g 0 1.1
1.0 g 0 2.2
0.0 f 1 4.4
2.0 h 1 4.4
NaN NaN 2 3.3
Source code in metaframe/src/dataframe/core.py
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 | |
from_index(idx)
classmethod
Creates DataFrame from pandas Index or MultiIndex.
Converts index to DataFrame via to_frame(index=False). Handles empty index
case explicitly.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
idx
|
Index or MultiIndex
|
|
required |
Returns:
| Type | Description |
|---|---|
Self
|
|
Examples:
>>> import metaframe as mf
>>> from metaframe.testing import dataframe
>>> dataframe.index
MultiIndex([(1.1, False, 0),
(2.2, False, 0),
(3.3, True, 2),
(4.4, True, 1)],
names=['floats', 'bool', 'group'])
>>> mf.DataFrame.from_index(dataframe.index)
floats bool group
0 1.1 False 0
1 2.2 False 0
2 3.3 True 2
3 4.4 True 1
Source code in metaframe/src/dataframe/core.py
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 | |
_update_from_mf_obj(mf, axis, _ignore_id=False)
Updates the DataFrame in-place using a _MetaFrame object.
Reindexes the DataFrame along the specified axis based on the _MetaFrame.
Updates the corresponding MetaFrameRow (axis=0) or MetaFrameCol (axis=1).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
mf
|
_MetaFrame
|
MetaFrame object to use for updating the DataFrame. |
required |
axis
|
Literal[0, 1]
|
Axis along which to update (0=row, 1=column). |
required |
_ignore_id
|
bool
|
If True, skips unique ID consistency check. Defaults to False. |
False
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If the MetaFrame is missing a unique index name. |
ValueError
|
If the MetaFrame axis does not match the target axis. |
ValueError
|
If the MetaFrame and DataFrame are misaligned (unless |
Notes
This will fail if there are any duplicated rows in the selected MetaFrame.
mfr or mfc attributes of the updated DataFrame are replaced with
the MetaFrame's reset index converted to a DataFrame.
The update is applied in-place.
Source code in metaframe/src/dataframe/core.py
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 | |